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(Some ?) Components of the Uncertainty
Quantification.

B Uncertainty analysis of model predictions: given data about uncertainty parameters
u € RP and a code that creates output fromit Yy = f(’LL) characterize y.
B Validation: Use data to test whether the UA model is appropriate or otherwise fit it or both.

O Challenge one: create model for © € RP from data. (Mihai’s definition of UQ) It does not
need to be probabilistic (see Helton and Oberkampf RESS special issue) but it tends to be. What
is the statistical model*?

[ Challenge two: uncertainty propagation. Since f is expensive to compute, we cannot expect to
compute a statistic of y very accurately from direct simulations alone (and there is also curse of
dimensionality; exponential growth of effort with dimension). How do | propagate the model if
the code is very computationally intensive?

L Challenge three: validation of uncertainty propagation model; or fitting/validation/testing. What
are the statistics | choose to test?



Challenge 2: Faster Uncertainty Propagation by
Using Derivative Information?

Uncertainty propagation requires multiple runs of a possibly expensive code.

On the other hand, adjoint differentiation adds a lot more information per unit of cost (O(p),
where p is the dimension of the uncertainty space; though needs lots of memory).

Q: Can | use derivative information in uncertainty propagation to accelerate its precision per unit
of computing time.

We believe the answer is yes.

Q: How?

This is what this presentation is about.



Outline

B 1. Polynomial regression with derivative PRD information: Uncertainty propagation using
sensitivity information.

B 2. Obtaining derivative information: Automatic Differentiation of Codes with Substantial Legacy
components.

B 3. PRD-based uncertainty propagation: Numerical examples.
B 4. What is a good basis in PRD? Limitations and Construction of Tensor Product Bases. Benefits.

If time permits

B 5. Better Models Gaussian Processes for Quantifying Uncertainty Propagation Error.



1. Polynomial regression with derivative
PRD information: Uncertainty propagation
using sensitivity information.



Why a hybrid sensitivity - sampling method for
uQ?

Brute force sampling suffers from the curse of dimensionality: it’s efficiency decreases
exponentially with the effective dimension of the uncertainty space.

On the other hand, sensitivity in UQ provides a lot of information but tends to be used ONLY in
conjunction with linearization models. As we will demonstrate, this may not go the distance.

It is reasonable to assume that a hybrid approach will inherit the strengths of both. But how to
do it?

Our answer: polynomial regression with derivative information (PRD).



Uncertainty quantification, subject models

B Model I. Matlab prototype code: a steady-state 3-dimensional
finite-volume model of the reactor core, taking into account heat
transport and neutronic diffusion. Parameters with uncertainty are
the material properties: heat conductivity, specific coolant heat,
heat transfer coefficient, and neutronic parameters: fission,
scattering, and absorbtion-removal cross-sections. Chemical

non-homogenuity between fuel pins can be taken into account.
Available experimental data is parameterized by 12-66 quantifiers.

STEAM GENERATOR

B Model ll. MATWS, a functional subset of an industrial complexity
code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely e

ZI2
documented. \ 4

| STRUCTURE
MATWS was used, in combination with a simulation tool Goldsim, N

UPPER UIS-CP
to model nuclear reactor accident scenarios. The typical analysis -
task is to find out if the uncertainty resulting from the error in N 2,
estimation of neutronic reactivity feedback coefficients is sufficiently "~ z,
i

small for confidence in safe reactor temperatures. The uncertainty is L o roor  Nier eLenom J

described by 4-10 parameters.
o



Representing Uncertainty

B We use a hierarchical structure. Given a generic model with uncertainty

F(T,R)=0
R=R(T) -(1+AR(T,e)) J=J(T)

with model state T:(TI>T2’"'aTn) R=(R1,R2,...,RN)

intermediate parameters and inputs

thatinclude errors AR = (AR|,AR,,...,ARy)

An output of interest is expressed by the merit function J(T)
The uncertainty is described by a set of stochastic quantifiers 0= (04,00, 0ty )
B We redefine the output as a function of uncertainty quantifiers, 3(a)=J(T)

and seek to approximate the unknown function 3(¢)



Polynomial Regression with Derivatives, PRD

B We approximate the unknown response function by polynomial regression based on a small set of model
evaluations. Both merit function outputs and merit function derivatives with respect to uncertainty
guantifiers are used as fitting conditions.

M PRD procedure:

- choose a basis of multivariate polynomials {‘Pq(a)}

the unknown function is then approximated by an expansion (&) = Zq x, 'Y, (@)

- choose training set {4} 4, = (Oéli,Olé,...,OC,i)

- evaluate the model and its derivatives for each point in the training set

- construct a regression matrix. Each row consists of either the values of the basis polynomials,
or the values of derivatives of basis polynomials, at a point in the training set.

- solve the regression matrix (in the least-squares sense) to find coefficients X,

B Questions (for later):
- How to best choose the polynomial basis?
- How to obtain gradient information at computational cost comparable with that of a model run?
- What to do if dimensionality of uncertainty space is very high?




Polynomial Regression with Derivatives, PRD

B PRD procedure, regression/
collocation* equations:

B Note: the only interaction with the
computationally expensive model
is on the right side!

B The polynomial regression
approach without derivative
information would provide (n+1)
times LESS rows.

B The overall computational savings
depend on how cheaply the
derivatives can be computed
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Equivalence between various approaches.

= Collocation is equivalent to interpolation (if basis is uniquely defined)

F(T(x,),R(T(x),x)=0, i=12,..,m.e > B ¥, (x)=T(x)=T, i=12,..,m.
l l

= |f Response function is linear in state, the collocation is equivalent to surface

response. J -
Y B, (x)=D J(BHAY,(x)=J(x)=J(T(x,)).

= |fit has a unigue solution, surface response is equivalent to Regression:

M 2
min ,, (J(xi)_Zﬁ“Pl(xi)) ;
= Same situation when derivatives aerIe used. o

= Therefore surface response, regression, collocation, interpolation are not far from

each other. We may call regression matrix collocation matrix.
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Cost versus benefit of using gradient information.

B Theory: Cost of gradient evaluation can be at most 5 times larger than cost of function evaluation.

Therefore relative efficiency of using gradient information versus using one more sample point: at least
n/5.

B This bound is achieved by adjoint calculations or reverse automatic differentiation mode.

B Sometimes, the bound is much smaller. Example: Coupling in multiphysics achieved by operator splitting/
Gauss Seidel since Newton method may not converge. Then compute adjoint at converged point.

B When instrumenting code for gradient with AD we are somewhere between intrusive and non-intrusive
methods for UQ. Clearly not as simple as brute force sampling, but not as intrusive as Galerkin stochastic
FEM methods either. But payoff of same accuracy for fewer samples is a great driver.

B In principle, can be operated without knowing what the code does, in practice, the latter helps.



2. Obtaining derivative information:
Automatic Differentiation of Codes with
Substantial Legacy components.



PRD, computation of derivatives

B Hand-coding derivatives is error-prone, has large development cost, code maintenance is a problem.

B Finite difference approximations introduce truncation errors, and Cost of gradient ~ Dimension X Cost of
the function, and advantage of adjoints is lost.

B For most applied purposes, a more promising approach is Automatic (Algorithmic) Differentiation, AD. It
also uses the chain-rule approach, but with minimal human involvement.

B I|deally, the only required processing is to identify inputs and outputs of interest, and resolve the errors at
compilation of the model augmented with AD.



Automatic Differentiation, AD

B AD is based on the fact that any program can be viewed as a finite sequence of elementary operations,
the derivatives of which are known. A program P implementing the function J can be parsed into a
sequence of elementary steps:

P J=fi(fia (- fi(@))
The task of AD is to assemble a new program P'to compute the derivative. In forward mode:
P (Vo)) = Ve V. I
i1 s do;

B In the forward (or direct) mode, the derivative is assembled by the chain rule following computational
flow from an input of interest to all outputs. We are more interested in the reverse (or adjoint) mode that
follows the reversed version of the computational flow from an output to all inputs:

N CARC AN A
. ’ da Jf, i

In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to multiple runs
required by the direct mode.

B For inherently non-differentiable components of code, it is possible to construct a smooth interpolation.
THIS is one of the many cases where it helps UQ to be integrated with a physics team which we believe
and we practice (We will not discuss nondifferentiability here).

-



AD tools, Fortran

B TAF (FastOpt)
- Commerical tool
- Support for almost all of Fortran 95

- Used extensively in geophysical sciences applications

B Tapenade
- Support for many Fortran 95 features
- Developed by a team with extensive complier experience

B OpenAD/F
- Support for many Fortran 95 features

- Developed by a team with expertise in combinatorial algorithms, compilers, software engineering, and
numerical analysis

- Development driven by climate modeling and astrophysics applications

B ADIFOR
- Mature, very robust tool. Support for all of Fortran 77 :forward and adjoint modes
- Hundreds of users, over 250 citations

-



AD tools, Capabilities

Fast O(1) computation of
Gradient (in adjoint mode)
Derivative matrix-vector products

Efficient computation of full Jacobians and Hessians, able to exploit sparsity, low-rank structure

Efficient high-order directional derivative computation

Minuses: it is still not a mature technology (after 30 years !!!) except for very specific cases (e.g codes
written entirely in Fortran 77+ STANDARD).

We believe in (and we practice) close integration with an AD development team (Jean Utke, Mihai Alexe)



Applying AD to code with major legacy components

We investigated the following question: are AD tools now at a stage where they can provide derivative
information for realistic nuclear engineering codes? Many models of interest are complex, sparsely
documented, and developed according to older (Fortran 77) standards.

Based on our experience with MATWS, the following (Fortran 77) features make application of AD
difficult:

Not supported by AD tools (since they are nonstandard) /need to be changed.
* machine-dependence code sections need to be removed (i/o)
* Direct memory copy operations needs to be rewritten as explicit operations (when LOC is used)
* COMMON blocks with inconsistent sizes between subroutines need to be renamed
* Subroutines with variable number of parameters need to be split into separate subroutines

EQUIVALENCE, COMMON, IMPLICIT* definitions are supported by most tools though they have to be
changed for some (such as OpenAD). (for Open AD statement functions need to be replaced by
subroutine definitions, they are not supported in newer Fortran)

Note that the problematic features we encountered have to do with memory allocation and management

and i/o, not mathematical structure of the model! We expect that (differentiable) mathematical
seqguences of any complexity can be differentiated.



Validation of AD derivative calculation

B Model I, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the fuel and
coolant maximum temperatures with respect to the radial core expansion coefficient ,obtained by
different AD tools, and compared with the Finite Differences approximation, FD.

All results agree with FD within 0.001% (and almost perfectly with each other).

OpenAD/F

18312.5474227 17468.4511372
TAPENADE

18312.5474227 17468.4511372



3. PRD-based uncertainty propagation:
Numerical examples.



PRD UQ, tests on subject models 1.

B Model |, Matlab prototype code. Output of interest: maximal fuel centerline temperature.

B We show performance of a version with 12 (most important) uncertainty quantifiers. Performance of PRD
approximation with full and truncated basis is compared against random sampling approach (100
samples)*:

Output range, K 2237.8 22274 2237.8 2237.5

2460.5 2450.0 2460.5 2459.6
Error st. 2.99 0.01 0.29
deviation

* derivative evaluations

required ~150% overhead



PRD, basis truncation

Issue: we would like to use high-order polynomials to represent non-linear relationships in the model.
But, even with the use of derivative information, the required size of the training set grows rapidly (curse
of dimensionality in spectral space)

We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis is already
available, for free!) and use an incomplete basis, i.e. polynomials of high degree only in variables of high
importance. This allows the use of some polynomials of high degree (maybe up to 57?)

Several versions of the heuristic are available, we choose to fit a given computational budget on the
evaluations of the model to form a training set.

In our first experiments, we use either a complete basis of order up to 3, or its truncated version allowing
the size of training set to be within 10-50 evaluations.

An even better scheme - adaptive basis truncation based on stepwise fitting is developed later,
simultaneously with conditions for better algebraic form of multivariate basis,



Uncertainty quantification, tests on subject models

=  Model ll, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty in an
accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical distribution of peak
fuel temperature.

= We reproduce the distribution of the outputs correctly*;
regression constructed on 50 model

evaluations thus replaces analysis #— Fullmodel distribution
) Regression model distribution
with 1,000 model runs. We show 95% confidence interval
cumulative distribution of the 1+ S e
peak fuel temperature. /‘y**
08F 4

7

= Note that the PRD approximation 06

is almost entirely within the 95%
04

confidence interval of the

sampling-based results. 0.2

\

e We also have error model now 85‘6!- 860 870 880 890 900 310 920 930
(Lockwood, MS72, Wed 10:30, Carson3)



4. What is a good basis in PRD?



PRD, selection of better basis

We inherited the use of Hermite multivariate polynomials as basis from a related method: Stochastic
Finite Elements expansion.

While performance of PRD so far is acceptable, Hermite basis may not be a good choice for constructing a
regression matrix with derivative information; it causes poor condition number of linear equations (of the

Fischer matrix).

Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability
measure p; Gaussian measure is the specific choice):

J ¥ (D (Dp(A)dAa=35,

Q

We formulate new orthogonality conditions:

d¥ (4
J [%(A)%(A) DY jp(A)dA -5,

Q o;

i i

and ask the question: how does a good basis with respect to this inner product looks like?



\ |
Insight on the scalar product -- framework

= Define the linear mapping

fo=(f(X),§—f(X),---,a—f(x)] i
X, ox,
X)) LX) e fiX)
=  For a vector function i(x) %(X) %(X)
T a-xl a-xl axl
Lf = .
O oy o e
ax, (x) ax, (x) o, (x)

= The collocation matrix in this framework, for a given set of polynomials \P is

L ¥
L ¥

| P

X
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\ |
What guides me when | choose the polynomials?

=  What is the least-squares matrix?

1 1
ZFTF=;§LXiT(LXi\PT)z

d ¥ . ¥ ‘
~ JQ LX‘P(LX‘PT )p(X)dX = (JQ(\PJ(X)‘Ph(X) + 2 ax.J (xX) aax.h (X)]p(x)dxj :

= For best use of information, | would like this matrix to be almost a multiple of the
identity.

= Inturn, this requires the polynomials to be orthogonal with respect to this new
inner product.

Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
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Tensor Product Bases

=  These are possibly the most common polynomial basis sets.

=  When one uses only function values (and not derivatives) we can construct

orthogonal tensor product bases of arbitrary order and arbitrary number of
variables.

= Does the same hold for this new orthogonal product? (it clearly does in one
dimension)

= Surprise, no, as can be shown by a counterexample.
= Univariate orthogonal polynomials :

1 9 1 9
1,x,,x —g,xf —Exl,xz,xf —g,xj —Exz.

=  Offenders:

9
—X
1077
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Do tensor products ever work?

=  Yes, sometimes:

Corollary 2. []
The following choices of I' all satisfy the satisfy the criteria of Theorem 2 that guarantees an orthonormal multivariate
basis:

I'i={peNg:|plli<3}, To={peNg:|pl <2},
Iy =T2U{p=1(0,...,0,p;,0,....00T eNg:i=1,...,d}.

= For higher dimensions, perhaps use GS, but no easy solution here.
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5. NUMERICAL RESULTS
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PRD, selection of better basis

Model I, Matlab prototype code.
We compare the setup of PRD
method using Hermite polynomial
basis and the improved basis. We
observe the improvement in the
distribution of singular values of the
collocation matrix.

We compare numerical
conditioning for Hermite, Legendre
polynomials, and the basis based on
new orthogonality conditions.

We have 10710 improvement in the
condition number of the Fischer
matrix *!!! In principle this results
in much more robustness of the
matrix.

This will offer us substantial
flexibility in creating the PRD
model.

Legendre
Hermite
Ne\A/

0 100 200
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PRD, adaptive (stepwise fitting) basis truncation

B We use a stepwise fitting procedure (based on F-test):
1. Create the PRD model as an expansion in the starting set of polynomials

2. Add one (estimated as most likely) polynomial to the set. An expansion term currently not in the model is
added if, out of all candidates, it has the largest likelihood that it would have non-negligible coefficient if
added to model.

3. Remove one (estimated as least likely) polynomial from the set. An expansion term in the model is
removed if it has the highest likelihood to have negligible coefficient.

B [tis possible to truncate the model starting with a full basis set (of fixed maximal polynomial order) or
from an empty basis set (all polynomials of fixed maximal order are candidates to be added).

2 10’ T
+ (O) tmncated wrth nothlng inthe mmal model l —#— (0) truncated with nothlng in the mmal mode[
181 (H)without basis truncation T (H)without basis truncation
(H) truncated with nothing in the initial model (H) truncated with nothing in the initial model
18 (H) truncated with everything in the initial model | 10° (H) truncated with everything in the initial model
141 e
12 s o
1 107" -
_*"'
08 A
*4—*/
06 I e
- 10
04
02 oo, . Ll
0 1': ; S N S A . — - _f 7 10'3 1 1 1 1 1 ! 1 1
0 2 4 6 8 10 12 14 16 18 1] 2 4 6 8 10 12 14 16 18
(Hermite basis error on 20 samples) (Orthogonal basis error on 20 samples, log_10 plot)

B Orthogonal basis created starting “with nothing” in the expansion results in precision of up to 0.01
degree K (compare with errors of >10 K by linear model).

-



Conclusions.

Polynomial Regression with Derivatives promises smaller error for the same number of runs of
the model but has new challenges compared with standard polynomial regression:

Standard inner product is not the most suitable, we introduced a new one that includes
derivative info.

Nevertheless, we demonstrate an orthogonal tensor product basis of arbitrary order may not
exist in this inner product.

Established new sufficient (and almost necessary) conditions for the larger tensor product basis
of finite order.

Future Research:
- Explore other basis generation approaches, to circumvent the order limit.
- Better error model (see Lockwood, MS72, Wed 10:30, Carson3 talk).

- Need to find a balance between the need for high-order polynomials, and limitations on
the number of samples





